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Ordered patterns are well known to form on the surfaces
of ferrofluid films in presence of an external magnetic field.
This macroscopic pattern formation process has been ex-
plained theoretically in terms of the Rosensweig instability
[1] and studied numerically through e.g. a combination of
the Navier-Stokes and Maxwell equations [2]. For an exam-
ple of ferrofluid silver, see Fig. 1.

Figure 1: Ferrofluid droplet under a magnetic field, from [3].

Nanotechnology provides a different, challenging context
in which a high degree of order, such as is found for these
patterns, would be highly beneficial, in order to enhance op-
toelectronic, catalytic, and/or other material properties [4].
Actually, bottom-up processes by which surfaces can self-
organize into highly ordered structures at the nanoscale are
relatively scarce. Note that gravity, which is a stabilizing
mechanism in the Rosensweig instability, is negligible at
such small distances. However, at the same time the inter-
action between the free fluid surface and the substrate (dis-
joining pressure,Π), becomes relevant [5]. Here we make a
theoretical proposal to produce highly ordered nanopattenrs
on the surface of ultrathin ferrofluid layers on suitable sub-
strates under magnetic fields. Specifically, we put forward a
continuum model for the dynamics of the layer thicknessh,
which we derive analytically and integrate numerically.

The derivation of the effective surface equation has been
carried out from the following equations, using the boundary
conditions sketched in Fig. 2 and notations as in [6]:

∂th = −∂x

∫

h

0

u(y)dy, (Mass conservation)

∇P = η∇2~v +∇ · Tm, (Linear momentum cons.)

∇× ~H = 0 =⇒ ~H = −∇ψ, (Ampere’s law)

∇ · ~B = 0. (Gauss’ law)

By employing the lubrication approximation [6, 7], and in
the large magnetic permeability limit, the following effective

Figure 2: System diagram within boundary conditions.

equation is obtained in dimensionless units [8],
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whereH(·) is the Hilbert transform. For instance, the lin-
ear dispersion relation for growth/decay of periodic per-
turbations with wave vectork to an homogeneous profile
h(x) = h0 reads
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which indeed features a narrow interval of unstable Fourier
modes (thus, enhanced pattern order) for large enough val-
ues of the external magnetic fieldHext and suitable sur-
face/substrate interactions. Numerical confirmation of these
results in the nonlinear regime of our continuum model will
be additionally presented, at which different physical forms
for the disjoining pressure will be considered.
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